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Abstract 
The Linux kernel stack has a fixed size. There is 

no mechanism to prevent the kernel from 
overflowing the stack. Hackers can exploit this bug 
to put unwanted information in the memory of the 
operating system and gain control over the system. 
In order to prevent this problem, we introduce a 
dynamically sized kernel stack that can be integrated 
into the standard Linux kernel. The well-known 
paging mechanism is reused with some changes, in 
order to enable the kernel stack to grow.   

 
1. Introduction 

 
The management of virtual memory and the 

relationship of software and hardware to this 
management is an old research subject [1]. In this 
paper we would like to focus on the kernel mode 
stack. Our discussion will deal with the Linux 
operating system running on an IA-32 architecture 
machine. However, the proposed solutions may be 
relevant for other platforms and operating systems as 
well. 

 
The memory management architecture of IA-32 

machines uses a combination of segmentation 
(memory areas) and paging to support a protected 
multitasking environment [2]. The x86 enforces the 
use of segmentation which provides a mechanism of 
isolating individual code, data and stack modules.  

 
Therefore, Linux splits the memory address 

space of a user process into multiple segments and 
assigns a different protection mode for each of them. 
Each segment contains a logical portion of a process, 
e.g. the code of the process. Linux uses the paging 
mechanism to implement a conventional demand-
paged, virtual-memory system and to isolate the 
memory spaces of user processes [3].  

 
Paging is a technique of mapping small fixed 

size regions of a process address space into chunks 
of real, physical memory called page frames. The 

size of the page is constant, e.g. IA-32 machines use 
4KB of physical memory. 

 
In point of fact, IA-32 machine support also large 

pages of 4MB. Linux (and Windows) do not use this 
ability of large pages (also called super-pages) and 
actually the 4KB page support fulfills the needs for 
the implementation of Linux [4]. 

 
Linux enables each process to have its own 

virtual address space. It defines the range of 
addresses within this space that the process is 
allowed to use. The addresses are segmented into 
isolated section of code, data and stack modules. 

 
Linux provides processes a mechanism for 

requesting, accessing and freeing memory [5,6]. 
Allocations are made to contiguous, virtual 
addresses by arranging the page table to map 
physical pages.  Processes, through the kernel, can 
dynamically add and remove memory areas to its 
address space. Memory areas have attributes such as 
the start address in the virtual address space, length 
and access rights. User threads share the process 
memory areas of the process that has spawned them; 
therefore, threads are regular processes that share 
certain resources. The Linux facility known as 
“kernel threads” are scheduled as user processes but 
lack any per-process memory space and can only 
access global kernel memory. 

 
Unlike user mode execution, kernel mode does 

not have a process address space. If a process 
executes a system call, kernel mode will be invoked 
and the memory space of the caller remains valid. 
Linux gives the kernel a virtual address range of 
3GB to 4GB, whereas the processes use the virtual 
address range of 0 to 3GB. Therefore, there will be 
no conflict between the virtual addresses of the 
kernel and the virtual addresses of whichever 
process. 

 
In addition, a globally defined kernel address 

space becomes accessible which is not process 
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unique but is global to all processes running in 
kernel mode. If kernel mode has been entered not via 
a system call but rather via a hardware interrupt, a 
process address space is defined but it is irrelevant to 
the current kernel execution. 

 
2. Stack Allocations 

 
2.1. Fixed Size Allocations 

 
User space allocations are transparent with a 

large and dynamically growing stack. In the Linux 
kernel's environment the stack is small-sized and 
fixed. It is possible to determine the stack size as 
from 2.6.x kernel series during compile time 
choosing between 4 to 8KB. The current tendency is 
to limit the stack to 4KB. 

 
The allocation of one page is done as one non-

swappable base-page of 4KB. If a 8KB stack is used, 
two non-swappable pages will be allocated, even if 
the hardware support an 8KB super-page [7]; in 
point of fact, IA-32 machines do not support 8KB 
super-pages, so 8KB is the only choice. 

  
 The rational for this choice is to limit the 

amount of memory and virtual memory address 
space that is allocated in order to support a large 
number of user processes. Allocating an 8KB stack 
increases the amount of memory by a factor of two. 
In addition the memory must be allocated as two 
contiguous pages which are relatively expensive to 
allocate.  

 
A process that executes in kernel mode, i.e. 

executing a system call, will use its own kernel 
stack. The entire call chain of a process executing 
inside the kernel must be capable of fitting on the 
stack. In an 8KB stack size configuration, interrupt 
handlers use the stack of the process they interrupt. 
This means that the kernel stack size might need to 
be shared by a deep call chain of multiple functions 
and an interrupt handler. In a 4KB stack size 
configuration, interrupts have a separate stack, 
making the exception mechanism slower and more 
complicated [8]. 

 
The strict size of the stack may cause an 

overflow. Any system call must be aware of the 
stack size. If large stack variables are declared 
and/or too many function calls are made, an 
overflow may occur.  

 
Memory corruption caused by a stack overflow 

may cause the system to be in an undefined state. 

The kernel makes no effort to manage the stack and 
no essential mechanism oversees the stack size. 

 
In [9] the authors present an empirical study of 

Linux bugs. The study compares errors in different 
subsections of Linux kernels, discovers how bugs 
are distributed and generated, calculates how long, 
on average, bugs live, clusters bugs according to 
error types, and compares the Linux kernel bugs to 
the OpenBSD kernel bugs. The data used in this 
study was collected from snapshots of the Linux 
kernel across seven years. The study refers to the 
versions until the 2.4.1 kernel series, as it was 
published in 2001. 1025 bugs were reported in this 
study. The reason for 102 of these bugs is large stack 
variables on the fixed-size kernel stack. Most of the 
fixed-size stack overflow bugs are located in device 
drivers. Device drivers are written by many 
developers who may understand the device more 
than the kernel, but are not aware of the kernel stack 
limitation. Hence, no attempt is made to confront 
this setback. In addition, only a few users may have 
a given device; thus, only a minimal check might be 
made for some device drivers. In addition, Cut-and-
Paste bugs are very common in device drivers and 
elsewhere [10]; therefore, the stack overflow bugs 
are incessantly and unwarily spread.  

 
The goal of malicious attackers is to drive the 

system into an unexpected state, which can help the 
attacker to infiltrate into the protected portion of the 
operating system. Overflowing the kernel stack can 
provide the attacker this option which can have very 
devastating security implications [11]. The attackers 
look for rare failure cases that almost never happen 
in normal system operations. It is hard to track down 
all the rare cases of kernel stack overflow, thus the 
operating system remains vulnerable. This leads us 
to the unavoidable conclusion: Since the stack 
overflows are difficult to detect and fix, the 
necessary solution is letting the kernel stack grow 
dynamically. 

 
A small fixed size stack is a liability when trying 

to port code from other systems to Linux. The kernel 
thread capability would seem offer an ideal platform 
for porting user code and non-Linux OS code. This 
facility is limited both by the lack of a per-process 
memory space and by a small fixed sized size stack. 

 
An example of the inadequacy of the fixed size 

stack is in the very popular use of the Ndiswrapper 
project [12] to implement Windows kernel API and 
NDIS (Network Driver Interface Specification) API 
within the Linux kernel. This can allow the use of a 
Windows binary driver for a wireless network card 



 3

running natively within the Linux kernel, without 
binary emulation. This is frequently the solution 
used when hardware manufacturers refuse to release 
detail of their product so a native Linux driver is not 
available.  

 
The problem with this approach is that the 

Windows kernel provides a minimum of 12KB 
kernel stack whereas Linux in the best case uses an 
8KB stack. This mismatch of kernel stack sizes can 
and cause system stack corruptions leading to kernel 
crashes. This would ironically seem to be the 
ultimate revenge of an OS (MS Windows) not 
known for long term reliability on an OS (Linux) 
which normally is known for its long term stability. 

 
2.2. Dynamic Size Allocations 

 
In the 1980s, a new operating system concept 

was introduced: the microkernels [13,14]. The 
objective of microkernels was to minimize the 
kernel code and to implement anything possible 
outside the kernel. This concept is still alive and 
embraced by some operating systems researchers 
[15], although the classic operating systems like 
Linux still employ the traditional monolithic kernel. 

 
The microkernels concept has two main 

advantages: First, the system is flexible and 
extensible, i.e. the operating system can easily adapt 
a new hardware. Second, many malfunctions are 
isolated like in a regular application; because many 
parts of the operating system are standard processes 
and thus are independent. A permanent failure of a 
standard process does not induce a reboot; therefore, 
the microkernel based operating systems tend to be 
more robust [16]. 

 
A microkernel feature that is worthy of note is 

the address space memory management [17]. A 
dedicated process is in charge of the memory space 
allocation, reallocations and free. The process is 
executed in user mode; thus, the page faults are 
forwarded and handled in user mode and cannot 
cause a kernel bug. Moreover, most of the kernel 
services are implemented outside the kernel and 
specifically the device drivers; hence these services 
are executed in user mode and are not able to use the 
kernel stack. 

 
Although the microkernel has many theoretical 

advantages [18], its performance and efficiency are 
somewhat disappointing. Nowadays, most of the 
modern operating systems use a monolithic kernel. 
In addition, even when an operating system uses a 

microkernel scheme, there still will be minimal use 
of the kernel stack. 

 
We propose an approach that suggests a 

dynamically growing stack. However, unlike the 
microkernel approach, we will implement the 
dynamically growing stack within the kernel. 

 
2.3. Real Time Considerations 

 
Linux is designed as a non-preemptive kernel. 

Therefore, by its nature, is not well suited for real 
time applications that require deterministic response 
time. 

 
The 2.4.x Linux kernel versions introduced 

several new amendments. One of them was the 
preemptive patch which supports soft real-time 
applications [19]. This patch is now a standard in the 
new Linux kernel versions [20]. The objective of 
this patch is executing the scheduler more often by 
finding places in the kernel code that preemptions 
can be executed safely. On such cases more data is 
pushed onto the kernel stack. This additional data 
can worsen the kernel overflow problem. In 
addition, these cases are hard to be predicted [21]. 

 
For hard real-time applications, RTLinux [22] or 

RTAI [23] can be used. These systems use a nano-
kernel that runs Linux as its lowest priority 
execution thread. This thread is fully preemptive 
hence real-time tasks are never delayed by non-real-
time operations. 

 
Another interesting solution for a high-speed 

kernel-programming environment is the KML 
(Kernel Mode Linux) project [24,25,26]. KML 
allows executing user programs in kernel mode and 
a direct access to the kernel address space. The 
kernel mode execution eliminates the system call 
overhead, because every system call is merely a 
function call. The main disadvantage of KML is that 
any user can write to the kernel memory. In order to 
trim down the aforementioned problem, the author 
of KML suggests using TAL (Typed Assembly 
Language) which checks the program before 
loading. However, this check does not always find 
the memory leak. As a result, the security is very 
poor. It is difficult to prevent illegal memory access 
and illegal code execution. On occasion, memory 
illegal accesses are done deliberately, but they also 
can be performed accidentally.  

 
Our approach to increase the soft real-time 

applications responsiveness is to run them as kernel 
threads while using fundamental normal process 
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facilities such as a large and dynamically growing 
stack. While running in kernel context, it is possible 
to achieve a better predictive response time as the 
kernel is the highest priority component in the 
system. The solution provides the most important 
benefits you find in the KML project, although this 
solution is a more intuitive and straightforward 
implementation.  
 

3. Implementation 
 

The objective of this implementation is to 
support the demand paging mechanism for the 
kernel mode stack. The proposed solution is a patch 
for the kernel that can be enabled or disabled using 
the kernel configuration tools. In the following 
sections the design, implementation and testing 
utilities are described.  

 
3.1. Process Descriptor 

 
In order to manage its processes, Linux has for 

each process a process descriptor containing the 
information related to this process [27]. Linux stores 
the process descriptors in a circular doubly linked 
list called the task list. The process descriptor's 
pointer is a part of a structure named "thread_info" 
that is stored under the bottom of the kernel mode 
stack of each process as shown in Figure 1.  

 
This feature allows referencing the process 

descriptor using the stack pointer without any 
memory referencing. The reason for this method of 
implementation is improved performance. The stack 
pointer address is frequently used; hence, it is stored 
in a special purpose register. In order to get a 
reference for the current process descriptor faster, 
the stack pointer is used. This is done by a macro 
called “current”. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Kernel Memory Stack and the Process 
Descriptor 

 
In order to benefit the performance and leave the 

“current” mechanism untouched, a new allocation 
interface is introduced which allocates one physical 
page and a contiguous virtual address space that is 
aligned to the new stack size.  

 
The new virtual area of the stack size can be of 

any size. The thread_info structure is set to the top 
of the highest virtual address minus the thread_info 
structure size. The stack pointer starts from beneath 
the thread_info. Additional physical pages will be 
allocated and populated in the virtual address space 
if the CPU triggers a page fault exception. 

 
3.2. Exceptions 

 
The IA-32 architecture provides 4 protection 

levels of code execution. Usually they are called 
"rings" and numbered as 0,1,2,3 whereas 0 is the 
most privileged ring and 3 is the least privileged. 
Linux uses just ring 0 and 3. Ring 0 is used when the 
kernel is executed, whereas 3 is used for non-
privileged user space applications. 

 
 When a process is executed and an exception 

occurs, the ring is switched from 3 to 0. One of the 
consequences of this switch is changing of the stack. 
The process’ user space stack is replaced by the 
process’ kernel mode stack while the CPU pushes 
several registers to the new stack. When the 
execution is completed, the CPU restores the 
interrupted process user space stack using the 
registers it pushed to the kernel stack.  

 
If an exception occurs during a kernel execution 

in the kernel mode stack, the stack is not replaced 
because the task is already running in ring 0. The 
CPU cannot push the registers to the kernel mode 
stack, thus it generates a double fault exception. This 
is called the stack starvation problem. 

 
3.3. Interrupt Task 

 
Interrupts divert the processor to code outside the 

normal flow of control. The CPU stops what it is 
currently doing and switches to a new activity. This 
activity is usually held in the context of the process 
that is currently running, i.e the interrupted process. 
As mentioned, current scheme may lead to a stack 
starvation problem if a page fault exception happens 
in the kernel mode stack.  

 
The IA-32 provides a special task management 

facility to support process management in the kernel. 

Current 

Stack  
Pointer  

Highest 
Memory 
Address 

Lowest 
Memory 
Address 

Start 
of 

Stack 

 
thread_info 
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Using this facility while running in the kernel mode 
causes the CPU to switch an execution context to a 
special context, therefore preventing the stack 
starvation problem.  

 
The current Linux kernel release uses this kind of 

mechanism to handle double fault exceptions that 
are non-recoverable exceptions in the kernel. This 
mechanism uses a system segment called a Task 
State Segment that is referenced via the IDT 
(Interrupt Descriptor Table) and the GDT (Global 
Descriptor Table) tables. This mechanism provides a 
protected way to manage processes although it is not 
widely used because of a relatively larger context 
switch time.  

 
We suggest adding the special task management 

facility to handle page fault exceptions in the kernel 
mode stack. Using this mechanism it is possible to 
handle the exceptions by allocating a new physical 
page, mapping it to the kernel page tables and 
resuming the interrupted process. Current user space 
page faults handling will remains as is. 

 
4. Evaluation 

 
We performed a functionality test to check that 

when the CPU triggers a page fault in the kernel 
mode stack, a new page is actually allocated and 
mapped to the kernel page tables.  

 
This feature was accomplished by writing a 

kernel module and intentionally overloading the 
stack by a large vector variable. We then added 
printing to the page fault handler and were able to 
assess that the new mechanism worked as expected. 

 
It has to be noted that only page faults that are in 

the kernel mode stack are handled using the task 
management facility, whereas page faults triggered 
from user space processes are handled as in the 
original kernel. 

 
Triggering of page faults from the user processes 

stack and even more so from the kernel mode stack 
rarely happens. In both scenarios performance 
decrement in the system is negligible.  

 
In spite of the aforementioned, we obtained 

several measurements to ensure that the new 
mechanism does not demonstrate anomalous results.  
 
 
 
 

5. Conclusions 
 

An overflow in kernel stack is a common bug in 
the Linux operating system. These bugs are difficult 
to detect because they are created as a side effect of 
the code and not as an inherent mistake in the 
algorithm implementation. 

 
This paper shows how the size of the kernel 

stack can dynamically grow using the common 
mechanism of page faults giving a number of 
advantages:  

 
1.) Stack pages are allocated on demand. If a 

kernel process needs minimal stack only one page is 
allocated. Only kernel processes that need larger 
stacks will have more pages allocated. 

 
2.) The stack pages allocated per kernel process 

need not be contiguous but rather non-contiguous 
physical pages are mapped contiguously by the 
MMU. 

 
3.) Stack overflows can be caught and damage to 

other kernel process stacks prevented. 
 
4.) Larger kernel stacks can be efficiently 

provided. This facilitates porting of code that has not 
been designed for minimal stack usage into the 
Linux kernel. 
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