
 1

Eliminating the Threat of Kernel Stack Overflows

Yair Wiseman
Computer Science

Department
The Open University

Israel
wiseman@cs.huji.ac.il

Joel Isaacson
Ascender Technologies

Israel
joel@ascender.com

Eliad Lubovsky
Computer Science

Department
Bar-Ilan University

Israel
eliadl@013.net

Abstract
The Linux kernel stack has a fixed size. There is

no mechanism to prevent the kernel from
overflowing the stack. Hackers can exploit this bug
to put unwanted information in the memory of the
operating system and gain control over the system.
In order to prevent this problem, we introduce a
dynamically sized kernel stack that can be integrated
into the standard Linux kernel. The well-known
paging mechanism is reused with some changes, in
order to enable the kernel stack to grow.

1. Introduction

The management of virtual memory and the

relationship of software and hardware to this
management is an old research subject [1]. In this
paper we would like to focus on the kernel mode
stack. Our discussion will deal with the Linux
operating system running on an IA-32 architecture
machine. However, the proposed solutions may be
relevant for other platforms and operating systems as
well.

The memory management architecture of IA-32

machines uses a combination of segmentation
(memory areas) and paging to support a protected
multitasking environment [2]. The x86 enforces the
use of segmentation which provides a mechanism of
isolating individual code, data and stack modules.

Therefore, Linux splits the memory address

space of a user process into multiple segments and
assigns a different protection mode for each of them.
Each segment contains a logical portion of a process,
e.g. the code of the process. Linux uses the paging
mechanism to implement a conventional demand-
paged, virtual-memory system and to isolate the
memory spaces of user processes [3].

Paging is a technique of mapping small fixed

size regions of a process address space into chunks
of real, physical memory called page frames. The

size of the page is constant, e.g. IA-32 machines use
4KB of physical memory.

In point of fact, IA-32 machine support also large

pages of 4MB. Linux (and Windows) do not use this
ability of large pages (also called super-pages) and
actually the 4KB page support fulfills the needs for
the implementation of Linux [4].

Linux enables each process to have its own

virtual address space. It defines the range of
addresses within this space that the process is
allowed to use. The addresses are segmented into
isolated section of code, data and stack modules.

Linux provides processes a mechanism for

requesting, accessing and freeing memory [5,6].
Allocations are made to contiguous, virtual
addresses by arranging the page table to map
physical pages. Processes, through the kernel, can
dynamically add and remove memory areas to its
address space. Memory areas have attributes such as
the start address in the virtual address space, length
and access rights. User threads share the process
memory areas of the process that has spawned them;
therefore, threads are regular processes that share
certain resources. The Linux facility known as
“kernel threads” are scheduled as user processes but
lack any per-process memory space and can only
access global kernel memory.

Unlike user mode execution, kernel mode does

not have a process address space. If a process
executes a system call, kernel mode will be invoked
and the memory space of the caller remains valid.
Linux gives the kernel a virtual address range of
3GB to 4GB, whereas the processes use the virtual
address range of 0 to 3GB. Therefore, there will be
no conflict between the virtual addresses of the
kernel and the virtual addresses of whichever
process.

In addition, a globally defined kernel address

space becomes accessible which is not process

 2

unique but is global to all processes running in
kernel mode. If kernel mode has been entered not via
a system call but rather via a hardware interrupt, a
process address space is defined but it is irrelevant to
the current kernel execution.

2. Stack Allocations

2.1. Fixed Size Allocations

User space allocations are transparent with a

large and dynamically growing stack. In the Linux
kernel's environment the stack is small-sized and
fixed. It is possible to determine the stack size as
from 2.6.x kernel series during compile time
choosing between 4 to 8KB. The current tendency is
to limit the stack to 4KB.

The allocation of one page is done as one non-

swappable base-page of 4KB. If a 8KB stack is used,
two non-swappable pages will be allocated, even if
the hardware support an 8KB super-page [7]; in
point of fact, IA-32 machines do not support 8KB
super-pages, so 8KB is the only choice.

 The rational for this choice is to limit the

amount of memory and virtual memory address
space that is allocated in order to support a large
number of user processes. Allocating an 8KB stack
increases the amount of memory by a factor of two.
In addition the memory must be allocated as two
contiguous pages which are relatively expensive to
allocate.

A process that executes in kernel mode, i.e.

executing a system call, will use its own kernel
stack. The entire call chain of a process executing
inside the kernel must be capable of fitting on the
stack. In an 8KB stack size configuration, interrupt
handlers use the stack of the process they interrupt.
This means that the kernel stack size might need to
be shared by a deep call chain of multiple functions
and an interrupt handler. In a 4KB stack size
configuration, interrupts have a separate stack,
making the exception mechanism slower and more
complicated [8].

The strict size of the stack may cause an

overflow. Any system call must be aware of the
stack size. If large stack variables are declared
and/or too many function calls are made, an
overflow may occur.

Memory corruption caused by a stack overflow

may cause the system to be in an undefined state.

The kernel makes no effort to manage the stack and
no essential mechanism oversees the stack size.

In [9] the authors present an empirical study of

Linux bugs. The study compares errors in different
subsections of Linux kernels, discovers how bugs
are distributed and generated, calculates how long,
on average, bugs live, clusters bugs according to
error types, and compares the Linux kernel bugs to
the OpenBSD kernel bugs. The data used in this
study was collected from snapshots of the Linux
kernel across seven years. The study refers to the
versions until the 2.4.1 kernel series, as it was
published in 2001. 1025 bugs were reported in this
study. The reason for 102 of these bugs is large stack
variables on the fixed-size kernel stack. Most of the
fixed-size stack overflow bugs are located in device
drivers. Device drivers are written by many
developers who may understand the device more
than the kernel, but are not aware of the kernel stack
limitation. Hence, no attempt is made to confront
this setback. In addition, only a few users may have
a given device; thus, only a minimal check might be
made for some device drivers. In addition, Cut-and-
Paste bugs are very common in device drivers and
elsewhere [10]; therefore, the stack overflow bugs
are incessantly and unwarily spread.

The goal of malicious attackers is to drive the

system into an unexpected state, which can help the
attacker to infiltrate into the protected portion of the
operating system. Overflowing the kernel stack can
provide the attacker this option which can have very
devastating security implications [11]. The attackers
look for rare failure cases that almost never happen
in normal system operations. It is hard to track down
all the rare cases of kernel stack overflow, thus the
operating system remains vulnerable. This leads us
to the unavoidable conclusion: Since the stack
overflows are difficult to detect and fix, the
necessary solution is letting the kernel stack grow
dynamically.

A small fixed size stack is a liability when trying

to port code from other systems to Linux. The kernel
thread capability would seem offer an ideal platform
for porting user code and non-Linux OS code. This
facility is limited both by the lack of a per-process
memory space and by a small fixed sized size stack.

An example of the inadequacy of the fixed size

stack is in the very popular use of the Ndiswrapper
project [12] to implement Windows kernel API and
NDIS (Network Driver Interface Specification) API
within the Linux kernel. This can allow the use of a
Windows binary driver for a wireless network card

 3

running natively within the Linux kernel, without
binary emulation. This is frequently the solution
used when hardware manufacturers refuse to release
detail of their product so a native Linux driver is not
available.

The problem with this approach is that the

Windows kernel provides a minimum of 12KB
kernel stack whereas Linux in the best case uses an
8KB stack. This mismatch of kernel stack sizes can
and cause system stack corruptions leading to kernel
crashes. This would ironically seem to be the
ultimate revenge of an OS (MS Windows) not
known for long term reliability on an OS (Linux)
which normally is known for its long term stability.

2.2. Dynamic Size Allocations

In the 1980s, a new operating system concept

was introduced: the microkernels [13,14]. The
objective of microkernels was to minimize the
kernel code and to implement anything possible
outside the kernel. This concept is still alive and
embraced by some operating systems researchers
[15], although the classic operating systems like
Linux still employ the traditional monolithic kernel.

The microkernels concept has two main

advantages: First, the system is flexible and
extensible, i.e. the operating system can easily adapt
a new hardware. Second, many malfunctions are
isolated like in a regular application; because many
parts of the operating system are standard processes
and thus are independent. A permanent failure of a
standard process does not induce a reboot; therefore,
the microkernel based operating systems tend to be
more robust [16].

A microkernel feature that is worthy of note is

the address space memory management [17]. A
dedicated process is in charge of the memory space
allocation, reallocations and free. The process is
executed in user mode; thus, the page faults are
forwarded and handled in user mode and cannot
cause a kernel bug. Moreover, most of the kernel
services are implemented outside the kernel and
specifically the device drivers; hence these services
are executed in user mode and are not able to use the
kernel stack.

Although the microkernel has many theoretical

advantages [18], its performance and efficiency are
somewhat disappointing. Nowadays, most of the
modern operating systems use a monolithic kernel.
In addition, even when an operating system uses a

microkernel scheme, there still will be minimal use
of the kernel stack.

We propose an approach that suggests a

dynamically growing stack. However, unlike the
microkernel approach, we will implement the
dynamically growing stack within the kernel.

2.3. Real Time Considerations

Linux is designed as a non-preemptive kernel.

Therefore, by its nature, is not well suited for real
time applications that require deterministic response
time.

The 2.4.x Linux kernel versions introduced

several new amendments. One of them was the
preemptive patch which supports soft real-time
applications [19]. This patch is now a standard in the
new Linux kernel versions [20]. The objective of
this patch is executing the scheduler more often by
finding places in the kernel code that preemptions
can be executed safely. On such cases more data is
pushed onto the kernel stack. This additional data
can worsen the kernel overflow problem. In
addition, these cases are hard to be predicted [21].

For hard real-time applications, RTLinux [22] or

RTAI [23] can be used. These systems use a nano-
kernel that runs Linux as its lowest priority
execution thread. This thread is fully preemptive
hence real-time tasks are never delayed by non-real-
time operations.

Another interesting solution for a high-speed

kernel-programming environment is the KML
(Kernel Mode Linux) project [24,25,26]. KML
allows executing user programs in kernel mode and
a direct access to the kernel address space. The
kernel mode execution eliminates the system call
overhead, because every system call is merely a
function call. The main disadvantage of KML is that
any user can write to the kernel memory. In order to
trim down the aforementioned problem, the author
of KML suggests using TAL (Typed Assembly
Language) which checks the program before
loading. However, this check does not always find
the memory leak. As a result, the security is very
poor. It is difficult to prevent illegal memory access
and illegal code execution. On occasion, memory
illegal accesses are done deliberately, but they also
can be performed accidentally.

Our approach to increase the soft real-time

applications responsiveness is to run them as kernel
threads while using fundamental normal process

 4

facilities such as a large and dynamically growing
stack. While running in kernel context, it is possible
to achieve a better predictive response time as the
kernel is the highest priority component in the
system. The solution provides the most important
benefits you find in the KML project, although this
solution is a more intuitive and straightforward
implementation.

3. Implementation

The objective of this implementation is to
support the demand paging mechanism for the
kernel mode stack. The proposed solution is a patch
for the kernel that can be enabled or disabled using
the kernel configuration tools. In the following
sections the design, implementation and testing
utilities are described.

3.1. Process Descriptor

In order to manage its processes, Linux has for

each process a process descriptor containing the
information related to this process [27]. Linux stores
the process descriptors in a circular doubly linked
list called the task list. The process descriptor's
pointer is a part of a structure named "thread_info"
that is stored under the bottom of the kernel mode
stack of each process as shown in Figure 1.

This feature allows referencing the process

descriptor using the stack pointer without any
memory referencing. The reason for this method of
implementation is improved performance. The stack
pointer address is frequently used; hence, it is stored
in a special purpose register. In order to get a
reference for the current process descriptor faster,
the stack pointer is used. This is done by a macro
called “current”.

Fig. 1 Kernel Memory Stack and the Process
Descriptor

In order to benefit the performance and leave the

“current” mechanism untouched, a new allocation
interface is introduced which allocates one physical
page and a contiguous virtual address space that is
aligned to the new stack size.

The new virtual area of the stack size can be of

any size. The thread_info structure is set to the top
of the highest virtual address minus the thread_info
structure size. The stack pointer starts from beneath
the thread_info. Additional physical pages will be
allocated and populated in the virtual address space
if the CPU triggers a page fault exception.

3.2. Exceptions

The IA-32 architecture provides 4 protection

levels of code execution. Usually they are called
"rings" and numbered as 0,1,2,3 whereas 0 is the
most privileged ring and 3 is the least privileged.
Linux uses just ring 0 and 3. Ring 0 is used when the
kernel is executed, whereas 3 is used for non-
privileged user space applications.

 When a process is executed and an exception

occurs, the ring is switched from 3 to 0. One of the
consequences of this switch is changing of the stack.
The process’ user space stack is replaced by the
process’ kernel mode stack while the CPU pushes
several registers to the new stack. When the
execution is completed, the CPU restores the
interrupted process user space stack using the
registers it pushed to the kernel stack.

If an exception occurs during a kernel execution

in the kernel mode stack, the stack is not replaced
because the task is already running in ring 0. The
CPU cannot push the registers to the kernel mode
stack, thus it generates a double fault exception. This
is called the stack starvation problem.

3.3. Interrupt Task

Interrupts divert the processor to code outside the

normal flow of control. The CPU stops what it is
currently doing and switches to a new activity. This
activity is usually held in the context of the process
that is currently running, i.e the interrupted process.
As mentioned, current scheme may lead to a stack
starvation problem if a page fault exception happens
in the kernel mode stack.

The IA-32 provides a special task management

facility to support process management in the kernel.

Current

Stack
Pointer

Highest
Memory
Address

Lowest
Memory
Address

Start
of

Stack

thread_info

 5

Using this facility while running in the kernel mode
causes the CPU to switch an execution context to a
special context, therefore preventing the stack
starvation problem.

The current Linux kernel release uses this kind of

mechanism to handle double fault exceptions that
are non-recoverable exceptions in the kernel. This
mechanism uses a system segment called a Task
State Segment that is referenced via the IDT
(Interrupt Descriptor Table) and the GDT (Global
Descriptor Table) tables. This mechanism provides a
protected way to manage processes although it is not
widely used because of a relatively larger context
switch time.

We suggest adding the special task management

facility to handle page fault exceptions in the kernel
mode stack. Using this mechanism it is possible to
handle the exceptions by allocating a new physical
page, mapping it to the kernel page tables and
resuming the interrupted process. Current user space
page faults handling will remains as is.

4. Evaluation

We performed a functionality test to check that

when the CPU triggers a page fault in the kernel
mode stack, a new page is actually allocated and
mapped to the kernel page tables.

This feature was accomplished by writing a

kernel module and intentionally overloading the
stack by a large vector variable. We then added
printing to the page fault handler and were able to
assess that the new mechanism worked as expected.

It has to be noted that only page faults that are in

the kernel mode stack are handled using the task
management facility, whereas page faults triggered
from user space processes are handled as in the
original kernel.

Triggering of page faults from the user processes

stack and even more so from the kernel mode stack
rarely happens. In both scenarios performance
decrement in the system is negligible.

In spite of the aforementioned, we obtained

several measurements to ensure that the new
mechanism does not demonstrate anomalous results.

5. Conclusions

An overflow in kernel stack is a common bug in
the Linux operating system. These bugs are difficult
to detect because they are created as a side effect of
the code and not as an inherent mistake in the
algorithm implementation.

This paper shows how the size of the kernel

stack can dynamically grow using the common
mechanism of page faults giving a number of
advantages:

1.) Stack pages are allocated on demand. If a

kernel process needs minimal stack only one page is
allocated. Only kernel processes that need larger
stacks will have more pages allocated.

2.) The stack pages allocated per kernel process

need not be contiguous but rather non-contiguous
physical pages are mapped contiguously by the
MMU.

3.) Stack overflows can be caught and damage to

other kernel process stacks prevented.

4.) Larger kernel stacks can be efficiently

provided. This facilitates porting of code that has not
been designed for minimal stack usage into the
Linux kernel.

References

[1] P. Denning, "Virtual Memory", ACM
Computing Surveys (CSUR), Vol. 2(3), ACM Press,
New York, NY, USA, pp. 153-189, 1970.

[2] "Intel Pentium Processor User’s Manual", Intel
Corporation, Mt. Prospect IL, 1993.

[3] "IA-32 Intel Architecture Software Developer’s
Manual", Volume3: System Programming Guide,
September 2005

[4] S. J. Winwood, Y. Shuf, and H. Franke. Multiple
page size support in the Linux kernel. roceedings of
Ottawa Linux Symposium, Ottawa, Canada, June
2002.

[5] D. P. Bovet and M. Cesati, “Understanding the
Linux Kernel”. O’reilly; 2nd Edition, 2003.

 6

[6] R. Love, "Linux Kernel Development", Sams;
1st edition, September 8, 2003.

[7] Itshak M. & Wiseman Y., AMSQM: Adaptive
Multiple SuperPage Queue Management, Proc.
IEEE Conference on Information Reuse and
Integration (IEEE IRI-2008), Las Vegas, Nevada,
2008.

[8] A. Robbins, "Linux Programming by Example",
Pearson Education Inc., 2004.

[9] A. Chou, J.F. Yang, B. Chelf, S. Hallem, and D.
Engler, "An Empirical Study of Operating Systems
Errors", In Proceedings of the 18th ACM,
Symposium on Operating System Principals
(SOSP), pp. 73-88, Lake Louise, Alta. Canada,
October 2001.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, "CP-
Miner: A Tool for Finding Copy-paste and Related
Bugs in Operating System Code", The 6th
Symposium on Operating Systems Design and
Implementation (OSDI '04), San Francisco,
California, December 6-8, 2004.

[11] "Analysis of the Linux kernel", Coverity
Corporation, 2004.

[12] P Fuchs, G Pemmasani, "NdisWrapper",
http://ndiswrapper.sourceforge.net/, 2005.

[13] J. Liedtke, "Toward Real Microkernels",
Communications of the ACM, Vol. 39(9),
September 1996.

[14] B. N. Bershad, C. Chambers, S. Eggers, C.
Maeda, D. McNamee, P. Pardyak, S. Savage and E.
Gun Sirer, "SPIN - An Extensible Microkernel for
Application-specific Operating System Services",
ACM Operating Systems Review, Vol. 29(1),
January 1995.

[15] T. Leschke, "Achieving speed and flexibility by
separating management from protection: embracing
the Exokernel operating system", Operating Systems
Review, Vol. 38(4), pp. 5-19, October 2004.

[16] X. Lu and S. F. Smith, "A Microkernel Virtual
Machine: Building Security with Clear Interfaces",
ACM SIGPLAN Workshop on Programming

Languages and Analysis for Security, Ottawa,
Canada, June 10, pp. 47-56, 2006.

[17] J. Liedtke, "On Micro-Kernel Construction",
Proceedings of the 15th ACM Symposium on
Operating System Principles, ACM, December
1995.

[18] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos
and D. Magenheimer, "Are Virtual Machine
Monitors Microkernels Done Right?", Proceedings
of the Tenth Workshop on Hot Topics in Operating
Systems (HotOS-X), June 12-15, Santa-Fe, NM,
2005.

[19] G. Anzinger and N. Gamble, "Design of a Fully
Preemptable Linux Kernel", MontaVista Software,
September 2000.

[20] B. Kuhn "The Linux real time interrupt patch",
http://linuxdevices.com/articles/
AT6105045931.html, 2004.

[21] C. Williams, "Linux Scheduler Latency", Red
Hat Inc., March 2002.

[22] K. Dankwardt, "Real Time and Linux, Part 3:
Sub-Kernels and Benchmarks",
http://www.linuxdevices.com/articles/AT632007944
6.html, May 2001.

[23] P. Mantegazz, E. Bianchi, L. Dozio, S.
Papacharalambous, S. Hughes, "RTAI: Real-Time
Application Interface",
http://www.linuxdevices.com/articles/
AT6605918741.html, April 2000.

[24] T. Maeda, "Safe Execution of User programs in
Kernel Mode Using Typed Assembly Language",
Master Thesis, The University of Tokyo, February,
2002.

[25] T. Maeda, "Kernel Mode Linux: Execute user
process in kernel mode", http://www.yl.is.s.u-
tokyo.ac.jp/~tosh/kml/, 2002.

[26] T. Maeda, "Kernel Mode Linux", Linux
Journal, Issue 109, pp. 62-67, May 2003.

[27] M. Gorman, "Understanding The Linux Virtual
Memory Manager", Prentice Hall, Bruce Perens'
Open Source Series, April 2004.

